首页>新闻中心>正文

【干货】华泰证券:人工智能万亿市场待挖掘(下)

2015-04-22 00:00


中国青年投资家俱乐部(中国青年投资家协会):国内最大的青年投资人群体,涵盖几乎所有的投资机构,投资人找同行,创业者找投资人,就在这里。

4.2.2未来跨场景通用人工智能生态圈的格局

1、基础资源支持层实现路径:颠覆冯·诺依曼架构人脑芯片等技术将突破计算能力极限

未来的人工智能将致力于通过底层硬件架构的变革来实现。不同于现阶段底层对云计算的依赖,硬件模式将直接从芯片层面实现对人工神经网络的模拟,目标是构建一个硬件大脑。我们认为,这种突破将是下一代计算机科学的发展的重要方向。因为最近10年计算机科学更多关注的技术进步在于信息处理的标的这一层面,可以称之为大数据或者数据大爆炸时代。在不远的未来,数据大爆炸造成的结果是信息处理能力的瓶颈很快达到,因此,未来10年计算机科学的关注点将会转移到如何突破现阶段的计算能力极限,也就是颠覆冯·诺依曼的硬件架构。这个方向可能是AI在硬件设备上的一个终极解决方案,但从目前的技术成熟度上看,这条路径距离目标还有非常遥远的距离。目前已经看到的方向大致有以下三种:

1)人脑芯片。20148月,IBM宣布研制成功了一款大脑原型芯片TrueNorth,主攻超级计算机专业学习领域。TrueNorth微芯片由三星电子为IBM生产,使用了三星为生产智能机和其它移动设备微处理器所使用的相同制造技术。IBM就该芯片的底层设计与纽约康奈尔大学(Cornell University)纽约校区的研究人员进行了合作。自2008年以来,这一项目获得了美国五角大楼高级计划研究局的5300万美元注资。这款芯片集成了100万个神经元和2.56亿个突触,与普通蜜蜂的大脑水平相当,而人脑平均包含1000亿个神经元和难以统计数量的突触。目前,这款芯片每秒每瓦可实现460亿次神经突触操作,它能像人脑一样去探测并识别模式。简而言之,当人脑芯片发现与字母不同部分相关联的模式时,能够将这些字母关联在一起,从而识别出单词和整句,但距离可以商用的智能化程度还遥不可及。除IBM外,芯片巨头英特尔、高通等公司也拥有了被工程师称之为神经形态neuromorphic)的自主芯片设计。人脑启发软件公司 Numenta创始人杰夫霍金斯(Jeff Hawkins)认为,类似TrueNorth这样的二元芯片未来将让位于能够更有效地模拟出人脑联系功能的芯片产品,找到正确的神经元结构需要经历多年的研究过程。

2)量子计算。量子计算机是一种使用量子逻辑实现通用计算的设备。普通计算机存储数据的对象是晶体管电路的状态,而量子计算用来存储数据的对象是粒子的量子状态,它使用量子算法来进行数据操作。量子计算机的优势在于强大的并行计算速度。现在的计算机毕竟是二进制的,一遇到比较复杂的建模,像准确预测天气,预测更长时间后的天气等等,就会很费力费时;而超快量子计算机就能算,算得超快。因为当许多个量子状态的原子纠缠在一起时,它们又因量子位的叠加性,可以同时一起展开并行计算,从而使其具备超高速的运算能力。2014年,谷歌公司与科学家联手研制量子级计算机处理器,目的是未来使机器人像人类一样独立思考问题。但达到这个未来需要多久,目前我们还无法预知。

3)仿生计算机。仿生计算机的提出是为了解决如何构建大规模人工神经网络的问题。通用的CPU/GPU处理神经网络效率低下,如谷歌大脑的1.6万个CPU运行7天才能完成猫脸的无监督学习训练。谷歌大脑实现模拟人脑的突触数量仅为100亿个,而实际的人脑突触数量超过100万亿。采用CPU/GPU的通用处理器构建数据中心,占地、散热以及耗电等都是非常严峻的问题。成本方面,这样级别的数据中心,除了谷歌、百度之外,其他互联网企业根本无力搭建。专门的神经网络处理器成为解决以上问题的钥匙。目前国内的陈云霁团队所搭建的寒武纪神经网络计算机正是基于仿生学的原理,通过寒武纪生物大爆炸中获取的线索,实现的无需访问内存,减少90%以上的片上通讯时间,并支持几乎现有主流机器学习算法的网络计算机。寒武纪神经网络计算机跟主流GPU相比,取得了21倍的性能和300倍的性能功耗比提升。

2AI技术层的实现路径:通用智能实现跨场景的终极应用

在专用智能的时代,AI的技术应用是要针对不同的场景才能有效的。例如,格灵深瞳的计算机视觉技术,在安防视频监控领域可以识别出犯罪分子的异常行为举动并予以报警,但换做是商场中,格灵深瞳的三维摄像头就无法识别出客户的性别年纪等特征,并根据客户在不同柜台中逗留的时间,分析出客户可能偏好的产品并向其推荐。这两个应用场景其实都是依托于计算机视觉技术进行识别和响应的,但是专用智能时代,受到计算能力和建模能力的约束,同样的计算机视觉技术却无法解决跨场景的应用。

在未来,通用智能到来后,AI技术层的普适性将极大地提升。同样一个视频监控的摄像头加上背后的计算机视觉的云平台,放在不同的场合中,就能够根据用户不同的需求进行不同的识别并做出智能化的决策行为。这种终极应用的到来,必须依赖于计算资源上突破现有的能力极限,并且在建模上超越现阶段的深度学习算法的极限,真正让AI像人类一样去观察和思考并做出行为决策。

3AI应用层实现路径:AI定义一切智能硬件

未来的智能硬件应该多数是拥有一定终端计算存储和处理能力的标准化硬件配置,通过网络连接中层的AI技术,接受不同的AI应用,为用户提供各种智能化的服务。

在软件时代的说法是软件定义一切,表达的是硬件本身是标准化的,软件赋予了硬件具体的功能和身份,从而可以灵活地利用同样的硬件来满足用户不同的需求。在人工智能时代,应该“AI定义一切,所谓的智能硬件产品本身是标准化的硬件,通过不同的AI应用来响应用户的各种需求。同样的机器人助手,当用户逛商场的时候他会是AI导购,当用户逛公园的时候他会是AI导游,当用户办公的时候他会是AI秘书,当用户宅在家的时候他会是AI管家。

那么,如果这样标准化和高性能的智能终端大范围普及,目前还需要突破的瓶颈主要在几个方面:

1)传感器技术面临的挑战。在通往通用智能的路上,强大的信息采集功能是未来的智能硬件的必备条件。移动互联时代的主要采集类型局限于文字、图像、语音、视频和LBS等,感知技术的发展是信息采集能力的瓶颈。现有传感器已经开始可以采集重力感应、压力感应等以外的信息,未来感知能力的提升让智能硬件能够采集多元化的用户信息,包括一些还很不完善的用户感觉提取,如味觉、嗅觉等。以医疗应用为例,未来可穿戴设备可以和医院体检中心的设备一样,实时的采集人体的各种体征体感数据,将这些数据传送到云端,被分析后反馈给用户,如需要在饮食健康和体育锻炼上注意什么,身体有异常情况需要及时就诊和治疗。要实现这个完整的O2O闭环,在最初的信息搜集环节,必须有赖于感知技术的颠覆性创新出现。

返回上页